
CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Modern Programming

Languages - CSC445

Programming in C# Language

Lecture # 3

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Course Overview

⚫ Brief introduction to C#.

⚫ Covers the .NET framework, (most of) the C#

language and some of the most useful .NET

API’s.

⚫ Should not be your first programming class.

⚫ Assume you know C++ and/or Java and basic

object-oriented or component-based programming.

⚫ Requires (lots of) practice / reading.

⚫ C# and .NET cannot be learned thoroughly in this

brief course.

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Syllabus

⚫ Background, history, CLI, CIL, CLR, CTS, …

⚫ C# Types

⚫ Primitive types, Classes, Properties, Interfaces,

Delegates, Events, Generic types.

⚫ C# language features

⚫ foreach, yield, events, is/as (type casting), lock.

⚫ Common Interfaces

⚫ Iterators, equality and comparison

⚫ Base Class Library

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Programming in C#

 C# History

CSE 4253

Prof. Roger Crawfis

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

History of C#

⚫ Developed by Microsoft.

⚫ Based on Java and C++, but has many
additional extensions.

⚫ Java and C# are both being updated to
keep up with each other.

⚫ Cross-development with Visual Basic,
Visual C++, F#, IronPython, and many
other .NET languages.

⚫ See: http://en.wikipedia.org/wiki/List_of_CLI_languages

http://en.wikipedia.org/wiki/List_of_CLI_languages

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Classification of C#

⚫ Wikipedia.org definition.

⚫ Object-oriented.

⚫ Primarily imperative or procedural.

⚫ LINQ adds some functional programming

language capabilities.

⚫ Structured (as opposed to monolithic).

⚫ Strongly typed.

⚫ ISO and ECMA standardized.

http://en.wikipedia.org/wiki/C_Sharp_(programming_language)

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Microsoft’s .NET Technologies

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

The Class Libraries

⚫ The common classes that are used in
many programs

⚫ System.Console.WriteLine

⚫ XML, Networking, Filesystem, Crypto,
containers

⚫ Can inherit from many of these classes

⚫ Many languages run on .NET framework

⚫ C#, C++, J#, Visual Basic

⚫ even have Python (see IronPython)

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

.NET History

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

The Class Libraries

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

IDE’s and CLI Implementations

⚫ Visual C# http://www.microsoft.com/express/2008/

⚫ in MSDNAA
⚫ must be version 2008: we need C# 3.0

⚫ Mono: http://www.go-mono.com
⚫ Open Source for Linux: not quite at 2.0

⚫ Rotor: http://msdn.microsoft.com/net/sscli
⚫ Shared Source for Windows (through 2.0)

⚫ Use to work on BSD / OS X, too

⚫ Portable.NET: http://www.dotgnu.org
⚫ yet another open source implementation

http://www.microsoft.com/express/2008/
http://www.go-mono.com/
http://msdn.microsoft.com/net/sscli
http://www.dotgnu.org/

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Programming in C#

 CLR, CLI, oh my!

CSE 459.24

Prof. Roger Crawfis

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

CLR and JIT compiling.

⚫ C#, like Java, is
executed indirectly
through an abstract
computer architecture
called the CLR.
⚫ CLR => Common

Language Runtime.

⚫ Abstract, but well
defined.

⚫ C# programs are
compiled to an IL.
⚫ Also called MSIL, CIL

(Common Intermediate
Language) or bytecode. http://msdn2.microsoft.com/en-us/library/z1zx9t92(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/z1zx9t92(VS.80).aspx

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

CLR and JIT compiling.

⚫ The CLR transforms the CIL to assembly
instructions for a particular hardware
architecture.

⚫ This is termed jit’ing or Just-in-time
compiling.

⚫ Some initial performance cost, but the jitted
code is cached for further execution.

⚫ The CLR can target the specific architecture
in which the code is executing, so some
performance gains are possible.

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

CLR and JIT compiling.

⚫ All .NET languages compile to the same
CIL.

⚫ Each language actually uses only a
subset of the CIL.

⚫ The least-common denominator is the
Common Language Specification (CLS).

⚫ So, if you want to use your C#
components in Visual Basic you need to
program to the CLS.

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

CLR versus CLI.

⚫ CLR is actually an
implementation by
Microsoft of the CLI
(Common Language
Infrastructure) .

⚫ CLI is an open
specification.

⚫ CLR is really a
platform specific
implementation.

from wikipedia.org

http://upload.wikimedia.org/wikipedia/commons/6/6a/Overview_of_the_Common_Language_Infrastructure.png

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

The CLR Architecture

Class Loader

MSIL to Native

Compilers (JIT)

Code

Manager

Garbage

Collector (GC)

Security Engine Debug Engine

Type Checker Exception Manager

Thread Support COM Marshaler

Base Class Library Support

From MSDN

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Common Language Infrastructure.

⚫ CLI allows for cross-language

development.

⚫ Four components:

⚫ Common Type System (CTS)

⚫ Meta-data in a language agnostic fashion.

⚫ Common Language Specification –

behaviors that all languages need to follow.

⚫ A Virtual Execution System (VES).

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Common Type System (CTS)

⚫ A specification for how types are defined and
how they behave.
⚫ no syntax specified

⚫ A type can contain zero or more members:
⚫ Field

⚫ Method

⚫ Property

⚫ Event

⚫ We will go over these more throughout the
quarter.

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Common Type System (CTS)

⚫ CTS also specifies the rules for visibility and
access to members of a type:
⚫ Private

⚫ Family

⚫ Family and Assembly

⚫ Assembly

⚫ Family or Assembly

⚫ Public

⚫ We will go over these more throughout the
quarter.

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Common Type System (CTS)

⚫ Other rules

⚫ Object life-time

⚫ Inheritance

⚫ Equality (through System.Object)

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Common Type System (CTS)

⚫ Languages often define aliases

⚫ For example

⚫ CTS defines System.Int32 – 4 byte integer

⚫ C# defines int as an alias of System.Int32

⚫ C# aliases System.String as string.

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Common Type System (CTS)

From MSDN

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Common Language System

⚫ A specification of language features

⚫ how methods may be called

⚫ when constructors are called

⚫ subset of the types in CTS which are allowed

⚫ For example

⚫ Code that takes UInt32 in a public method

⚫ UInt32 is not in the CLS

⚫ Can mark classes as CLS-compliant

⚫ not marked is assumed to mean not compliant

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

CLS versus CLR

CLR via C#, Jeffrey Richter

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Built-in Types

C#
CTS type

(FCL name)
CLS compliant

int System.Int32 yes

uint System.UInt32 no

sbyte System.SByte no

byte System.Byte yes

short System.Int16 yes

ushort System.UInt16 no

long System.Int64 yes

ulong System.UInt64 no

float System.Single yes

double System.Double yes

decimal System.Decimal yes

char System.Char yes

string System.String yes

object System.Object yes

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Blittable types

⚫ Most of these types are blittable,
meaning their memory layout is
consistent across languages and hence,
support interoperability.

⚫ The types bool, char, object and string
are not and must be Marshaled when
using these between languages.

⚫ Single dimensional arrays of blittable
types are also blittable.

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Programming in C#

 Assemblies

CSE 494R
(proposed course for 459 Programming in C#)

Prof. Roger Crawfis

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Assemblies

⚫ Code contained in files called “assemblies”

⚫ code and metadata

⚫ .exe or .dll as before

⚫ Executable needs a class with a “Main” method:
⚫ public static void Main(string[] args)

⚫ types

⚫ local: local assembly, not accessible by others

⚫ shared: well-known location, can be GAC

⚫ strong names: use crypto for signatures

⚫ then can add some versioning and trust

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

PE executable file

Structure of PE file

PE header

MS IL instructions

Metadata

native instructions

Entry point address Other initial settings

e.g., x86 instructions

Type Tables Attributes Security

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Manifests and Assemblies

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

First C# Program

using System;

namespace Test

{

class ExampleClass

{

 static void Main()

 {

 System.Console.WriteLine("Hello, world!");

 }

}

}

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Constructions of Note

⚫ using

⚫ like import in Java: bring in namespaces

⚫ namespace

⚫ disambiguation of names

⚫ like Internet hierarchical names and C++
naming

⚫ class

⚫ like in C++ or Java

⚫ single inheritance up to object

CSC 350 Modern Programming LanguagesInstructor: Aamir Parre

Constructions of Note

⚫ static void Main()
⚫ Defines the entry point for an assembly.

⚫ Four different overloads – taking string arguments
and returning int’s.

⚫ Console.Write(Line)
⚫ Takes a formatted string: “Composite Format”

⚫ Indexed elements: e.g., {0}
⚫ can be used multiple times

⚫ only evaluated once

⚫ {index [,alignment][:formatting]}

	Slide 1: Modern Programming Languages - CSC445
	Slide 2: Course Overview
	Slide 3: Syllabus
	Slide 4: Programming in C# C# History
	Slide 5: History of C#
	Slide 6: Classification of C#
	Slide 7: Microsoft’s .NET Technologies
	Slide 8: The Class Libraries
	Slide 9: .NET History
	Slide 10: The Class Libraries
	Slide 11: IDE’s and CLI Implementations
	Slide 12: Programming in C# CLR, CLI, oh my!
	Slide 13: CLR and JIT compiling.
	Slide 14: CLR and JIT compiling.
	Slide 15: CLR and JIT compiling.
	Slide 16: CLR versus CLI.
	Slide 17: The CLR Architecture
	Slide 18: Common Language Infrastructure.
	Slide 19: Common Type System (CTS)
	Slide 20: Common Type System (CTS)
	Slide 21: Common Type System (CTS)
	Slide 22: Common Type System (CTS)
	Slide 23: Common Type System (CTS)
	Slide 24: Common Language System
	Slide 25: CLS versus CLR
	Slide 26: Built-in Types
	Slide 27: Blittable types
	Slide 28: Programming in C# Assemblies
	Slide 29: Assemblies
	Slide 30: PE executable file
	Slide 31: Manifests and Assemblies
	Slide 32: First C# Program
	Slide 33: Constructions of Note
	Slide 34: Constructions of Note

